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Sequence of random variables

gggcggcgacctcgcgggttttcgctatttatgaaaattttccggtttaaggcgtttccgttcttcttcgt
cataacttaatgtttttatttaaaataccctctgaaaagaaaggaaacgacaggtgctgaaagcgaggctt
tttggcctctgtcgtttcctttctctgtttttgtccgtggaatgaacaatggaagtcaacaaaaagcagct
ggctgacattttcggtgcgagtatccgtaccattcagaactggcaggaacagggaatgcccgttctgcgag
gcggtggcaagggtaatgaggtgctttatgactctgccgccgtcataaaatggtatgccgaaagggatgct
gaaattgagaacgaaaagctgcgccgggaggttgaagaactgcggcaggccagcgaggcagatctccagcc
aggaactattgagtacgaacgccatcgacttacgcgtgcgcaggccgacgcacaggaactgaagaatgcca
gagactccgctgaagtggtggaaaccgcattctgtactttcgtgctgtcgcggatcgcaggtgaaattgcc
agtattctcgacgggctccccctgtcggtgcagcggcgttttccggaactggaaaaccgacatgttgattt
cctgaaacgggatatcatcaaagccatgaacaaagcagccgcgctggatgaactgataccggggttgctga
gtgaatatatcgaacagtcaggttaacaggctgcggcattttgtccgcgccgggcttcgctcactgttcag
gccggagccacagaccgccgttgaatgggcggatgctaattactatctcccgaaagaatccgcataccagg
aagggcgctgggaaacactgccctttcagcgggccatcatgaatgcgatgggcagcgactacatccgtgag
gtgaatgtggtgaagtctgcccgtgtcggttattccaaaatgctgctgggtgtttatgcctactttataga

Vergne N. (LMRS) Markovian models, swimming and climbing 26/06/2023 2/ 72



Drifting Markov models
Semi-Markov models

Drifting semi-Markov models
Applications in Sport
Concluding remarks

Markov model

Markov property (order 1) : P(Xt | Xu, u < t) = P(Xt | Xt−1)

Markov model : an initial distribution µ0 and a transition matrix Π

For A = {a, c, g, t}, we have at order 1 :

µ0 =
(
µ0(a) µ0(c) µ0(g) µ0(t)

)

Π =


πaa πac πag πat
πca πcc πcg πct
πga πgc πgg πgt
πta πtc πtg πtt


where πuv = P(Xt = v | Xt−1 = u), with u ∈ A and v ∈ A and where
we can choose for example 0.25 for µ0(u), ∀u ∈ A .
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Definition (linear drifting Markov chain of order 1 and of length n)

A sequence X0, X1, . . . , Xn with state space E = {1, 2, . . . , s} is called a linear
drifting Markov chain (of order 1) of length n between the Markov transition
matrices Π0 and Π1, if the distribution of Xt, t = 1, . . . , n, is defined by

P(Xt = v | Xt−1 = u,Xt−2, . . .) = Π t
n

(u, v), u, v ∈ E,

where Π t
n

(u, v) =

(
1− t

n

)
Π0(u, v) +

t

n
Π1(u, v), u, v ∈ E.

Lemma

For a linear drifting Markov chain and k1 ≤ k2, k1, k2 ∈ N, we have

P(Xk2 = j | Xk1−1 = i) =

 k2∏
l=k1

Π l
n

 (i, j).
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Definition (polynomial drifting Markov chain of order k and of length n)

A sequence X0, X1, . . . , Xn with state space E = {1, 2, . . . , s} is said to be a
polynomial drifting Markov chain of order k and of length n if the distribution
of Xt, t = 1, . . . , n, is defined for u1, . . . , uk, v ∈ E by

P(Xt = v | Xt−1 = uk, Xt−2 = uk−1, . . .) = Π t
n

(u1, . . . , uk, v)

where Π t
n

(u1, . . . , uk, v) =
d∑
i=0

Ai(t)Π i
d

(u1, . . . , uk, v)

with Ai polynomials of degree d such as, for any i, j ∈ {0, 1, . . . , d},
Ai
(
nj
d

)
= 1{i=j}. Note : for t = ni/d, we have Π t

n
= Π i

d
.

Remark (Ai are Lagrange polynomials : chosen to have stochastic Π t
n
.)

Indeed
∑
v∈E

Π t
n

(u1, . . . , uk, v) =
d∑
i=0

Ai(t) = A(t) where A is a polynomial of

degree d equal to one in (d+ 1) points ; then A is a constant polynomial equal
to one.
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One sample path : linear drifting Markov model

Proposition (least square estimators of Π0(u, v) and Π1(u, v))

Π̂0;n(u, v) =


(
n∑
t=1

1{Xt−1=u}

(
t

n

)2
)(

n∑
t=1

1{Xt−1=u;Xt=v}

(
1−

t

n

))
−(

n∑
t=1

1{Xt−1=u}

(
1−

t

n

)(
t

n

))( n∑
t=1

1{Xt−1=u;Xt=v}

(
t

n

))



(
n∑
t=1

1{Xt−1=u}

(
1−

t

n

)2
)(

n∑
t=1

1{Xt−1=u}

(
t

n

)2
)
−(

n∑
t=1

1{Xt−1=u}

(
1−

t

n

)(
t

n

))( n∑
t=1

1{Xt−1=u}

(
1−

t

n

)(
t

n

))


Π̂1;n(u, v) =


(
n∑
t=1

1{Xt−1=u}

(
1−

t

n

)2
)(

n∑
t=1

1{Xt−1=u;Xt=v}

(
t

n

))
−(

n∑
t=1

1{Xt−1=u}

(
1−

t

n

)(
t

n

))( n∑
t=1

1{Xt−1=u;Xt=v}

(
1−

t

n

))



(
n∑
t=1

1{Xt−1=u}

(
1−

t

n

)2
)(

n∑
t=1

1{Xt−1=u}

(
t

n

)2
)
−(

n∑
t=1

1{Xt−1=u}

(
1−

t

n

)(
t

n

))( n∑
t=1

1{Xt−1=u}

(
1−

t

n

)(
t

n

))

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One sample path : polynomial drifting Markov model

Proposition

Let 1u := 1{Xt−k...Xt−1=u1...uk} and 1uv := 1{Xt−k...Xt−1=u1...uk,Xt=v}. For
(X0, X1, . . . , Xn) a sample path of a polynomial drifting Markov chain of order
k and degree d, for any states u1, . . . , uk, v ∈ E, the estimators of
Π i
d

(u1, . . . uk, v) are given by solving the following linear system



n∑
t=k

1uA0(t)A0(t) · · ·
n∑
t=k

1uA0(t)Ad(t)

.

.

.
.
.
.

n∑
t=k

1uAd(t)A0(t) · · ·
n∑
t=k

1uAd(t)Ad(t)




Π̂0;n

.

.

.
Π̂1;n

 =



n∑
t=k

A0(t)1uv

.

.

.
n∑
t=k

Ad(t)1uv


.
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Frequencies / Stationnary distributions (degree 1) on
Chlamydia trachomatis
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Frequencies / Stationnary distributions (degree 2)
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Frequencies / Stationnary distributions (degree 3)
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Frequencies / Stationnary distributions (degree 4)
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Frequencies / Stationnary distributions (degree 5)

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 0.31

 0  400000  800000

D
is

tr
ib

u
ti

o
n

s 
d

e 
a

Position dans la sequence

f(a)
µ(a)

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0  400000  800000

D
is

tr
ib

u
ti

o
n

s 
d

e 
c

Position dans la sequence

f(c)
µ(c)

 0.16

 0.17

 0.18

 0.19

 0.2

 0.21

 0.22

 0.23

 0.24

 0.25

 0  400000  800000

D
is

tr
ib

u
ti

o
n

s 
d

e 
g

Position dans la sequence

f(g)
µ(g)

 0.275

 0.28

 0.285

 0.29

 0.295

 0.3

 0.305

 0.31

 0  400000  800000

D
is

tr
ib

u
ti

o
n

s 
d

e 
t

Position dans la sequence

f(t)
µ(t)

Vergne N. (LMRS) Markovian models, swimming and climbing 26/06/2023 15/ 72



Drifting Markov models
Semi-Markov models

Drifting semi-Markov models
Applications in Sport
Concluding remarks

Definitions and Notations
Estimation

Frequencies / Stationnary distributions (degree 6)
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Frequencies / Stationnary distributions (degree 7)
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Frequencies / Stationnary distributions (degree 8)
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Several sample paths

Let us consider H i.i.d. sample paths of a linear drifting Markov chain
(Xk)0≤k≤n, H1(n) := (X1

0 , X
1
1 , . . . , X

1
n), . . . ,HH(n) := (XH

0 , X
H
1 , . . . , X

H
n ).

Proposition

Under this setting, the estimator of Π0(u, v) is given by :

Π̂0;(n,H)(u, v) =

 n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

( t
n

)2
 n∑

t=1

 H∑
h=1

1{Xh
t−1

=u,Xht =v}

(1−
t

n

)− n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)(
t

n

) n∑
t=1

 H∑
h=1

1{Xh
t−1

=u,Xht =v}

( t
n

)




 n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)2
 n∑

t=1

 H∑
h=1

1{Xh
t−1

=u}

( t
n

)2
− n∑

t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)(
t

n

) n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)(
t

n

)



.
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Proposition

Under this setting, the estimator of Π1(u, v) is given by :

Π̂1;(n,H)(u, v) =

 n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)2
 n∑

t=1

 H∑
h=1

1{Xh
t−1

=u,Xht =v}

( t
n

)− n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)(
t

n

) n∑
t=1

 H∑
h=1

1{Xh
t−1

=u,Xht =v}

(1−
t

n

)




 n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)2
 n∑

t=1

 H∑
h=1

1{Xh
t−1

=u}

( t
n

)2
− n∑

t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)(
t

n

) n∑
t=1

 H∑
h=1

1{Xh
t−1

=u}

(1−
t

n

)(
t

n

)



.

Method : minimize

n∑
t=1

∑
u∈A

∑
v∈A

H∑
h=1

1{Xht−1=u}

(
Π t
n

(u, v)− 1{Xht =v}

)2

.
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Other types of data

Let Π0 and Π1 be two Markov transition matrices over E = {1, . . . , s}.
1 (X0, X1, . . . , Xn).

2 (X0, X1, . . . , Xm),m ≤ n.
3 H1(n) := (X1

0 , X
1
1 , . . . , X

1
n), . . . ,HH(n) := (XH

0 , X
H
1 , . . . , X

H
n ).

4 H1(n) := (X1
0 , X

1
1 , . . . , X

1
m1

), . . . ,HH(n) := (XH
0 , X

H
1 , . . . , X

H
mH ),

with mi ≤ n, i = 1, . . . , H.

5 H1(n1) := (X1
0 , X

1
1 , . . . , X

1
n1

), . . . ,HH(nH) := (XH
0 , X

H
1 , . . . , X

H
nH ).

6 H1(n1) := (X1
0 , X

1
1 , . . . , X

1
m1

), . . . ,HH(nH) := (XH
0 , X

H
1 , . . . , X

H
mH );

with mi ≤ ni, i = 1, . . . , H.
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Z = (Zk)k∈N, chain with state space E = {1, 2, . . . , s}
S = (Sn)n∈N, jump times
J = (Jn)n∈N, visited states
X = (Xn)n∈N, sojourn times of Z

X 1

X 2

X n + 1

S 0 S 1 S 2 S n S n + 1

{ J 0 = i }

{ J 1 = j }

{ J n = k }

.  .  .

.  .  .

.  .  .

.  .  . t i m e

s t a t e s

( X n ) :  s o j o u r n  t i m e s

( J n   )  :  s t a t e s  o f  t h e  s y s t e m

( S n )   :   j u m p  t i m e s
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Notation/Definitions

the initial distribution α(i) := P(J0 = i)
the homogeneous SM kernel q =

(
q(i, j; k)

)
i,j∈E,k∈N

q(i, j; k) :=

{
P(Jn+1 = j,Xn+1 = k | Jn = i), k ∈ N∗
0, k = 0

the conditional sojourn time distributions f =
(
f(i, j; k)

)
i,j∈E,k∈N

f(i, j; k) := P(Xn+1 = k | Jn = i, Jn+1 = j), f(i, j; 0) := 0

the transition matrix of the MC (Jn)n∈N, p = (p(i, j))i,j∈E

p(i, j) := P(Jn+1 = j | Jn = i), p(i, i) := 0

Note that q(i, j; k) = p(i, j) f(i, j; k)
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Drifting semi-Markov models – 1

Definition (linear drifting semi-Markov chain of length n – Model 1)

A sequence Z0, Z1, . . . , ZN(n) with state space E = {1, 2, . . . , s} is called a
linear drifting Markov chain of length n of Model 1 between the semi-Markov
kernels q0 and q1, if for t = 0, . . . , n, we have

P(Jt+1 = v, St+1 − St = `|Jt = u) = q t
n

(u, v, `),

where q t
n

(u, v, `) =

(
1− t

n

)
q0(u, v, `) +

t

n
q1(u, v, `), u, v ∈ E, ` ∈ N.
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Drifting semi-Markov models – 2

Definition (linear drifting semi-Markov chain of length n – Model 2)

A sequence Z0, Z1, . . . , ZN(n) with state space E = {1, 2, . . . , s} is called a
linear drifting Markov chain of length n of Model 2 between the semi-Markov
kernels q0 and q1, if for t = 0, . . . , n, we have

P(Jt+1 = v, St+1 − St = `|Jt = u) = q t
n

(u, v, `), where

q t
n

(u, v; `) =

(
1− t

n

)
f(u, v; `)p0(u, v)+

t

n
f(u, v; `)p1(u, v), u, v ∈ E, ` ∈ N,

with p0 and p1 Markov kernels, f(u, v; `) the conditional distribution of the
sojourn in state u before jumping to v equal to `.
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Drifting semi-Markov models – 3

Definition (linear drifting semi-Markov chain of length n – Model 3)

A sequence Z0, Z1, . . . , ZN(n) with state space E = {1, 2, . . . , s} is called a
linear drifting Markov chain of length n of Model 3 between the semi-Markov
kernels q0 and q1, if for t = 0, . . . , n, we have

P(Jt+1 = v, St+1 − St = `|Jt = u) = q t
n

(u, v, `), where

q t
n

(u, v; `) =

(
1− t

n

)
f0(u, v, `)p(u, v) +

t

n
f1(u, v, `)p(u, v), u, v ∈ E, ` ∈ N,

with p a Markov kernel, f0(u, v; `) and f1(u, v; `) conditional distributions of
the sojourn in state u before jumping to v equal to `.
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Polynomial DSMM

Model 1 : p and f are drifting. The DSM kernel is given by :

q
(1)
t
n

=
d∑
i=0

Ai(t)q
(1)
i
d

(u, v, l) =

d∑
i=0

Ai(t)p i
d

(u, v)f i
d

(u, v, l)

Model 2 : Only p is drifting (f is not drifting). The DSM kernel is given by :

q
(2)
t
n

(u, v, l) =

d∑
i=0

Ai(t)q
(2)
i
d

(u, v, l) =

d∑
i=0

Ai(t)p i
d

(u, v)f(u, v, l)

Model 3 : Only f is drifting (p is not drifting). The DSM kernel is given by :

q
(3)
i
d

(u, v, l) =

d∑
i=0

Ai(t)q
(3)
i
d

(u, v, l) =

d∑
i=0

Ai(t)p(u, v)f i
d

(u, v, l)
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Non-parametric Estimation for model 1
Model 1

We can estimate the DSM kernel by Least Square Estimation (LSE),

q̂
(1)
t
n

(u, v, l) =
d∑
i=0

Ai(t)q̂
(1)
i
d

(u, v, l)

∀u, v ∈ E, l ∈ {1, . . . , kmax}, where kmax is the maximum realized sojourn
time in the sequence, we obtain the SM kernels q̂ (1)

i
d

(u, v, l), i = 0, . . . , d.

Estimators of p̂ i
d

(u, v) and f̂ i
d

(u, v, l) are obtained as in SMM:

p̂ i
d

(u, v) =

kmax∑
l=1

q̂
(1)
i
d

(u, v, l),

f̂ i
d

(u, v, l) =
q̂

(1)
i
d

(u, v, l)∑kmax
l=1 q̂

(1)
i
d

(u, v, l)
=
q̂

(1)
i
d

(u, v, l)

p̂ i
d

(u, v)
.
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Non-parametric Estimation for model 1

Model 1 : we solve MJ = P to obtain q̂ (1)
i
d

(u, v, l)

M =


∑n
t=1 1u(t)A0(t)A0(t) · · ·

∑n
t=1 1u(t)A0(t)Ad(t)

...
. . .

...∑n
t=1 1u(t)Ad(t)A0(t) · · ·

∑n
t=1 1u(t)Ad(t)Ad(t)



J =



q̂
(1)

0 (u, v, l)
...

q̂
(1)
i
d

(u, v, l)

...
q̂

(1)
1 (u, v, l)


and P =



∑n
t=1 1uvl(t)A0(t)

...∑n
t=1 1uvl(t)Ai(t)

...∑n
t=1 1uvl(t)A1(t)


Where 1u(t) = 1{Jt−1=u}(t), and 1uvl(t) = 1{Jt=v,Jt−1=u,Xt=l}(t).

Vergne N. (LMRS) Markovian models, swimming and climbing 26/06/2023 34/ 72



Drifting Markov models
Semi-Markov models

Drifting semi-Markov models
Applications in Sport
Concluding remarks

Definitions
Estimation
dsmmR Package

Non-parametric Estimation for model 2

Model 2

p̂ i
d

(u, v) =

kmax∑
l=1

q̂
(1)
i
d

(u, v, l) (as in Model 1)

f̂(u, v, l) =

∑d
i=0 q̂

(1)
i
d

(u, v, l)∑d
i=0

∑kmax
l=1 q̂

(1)
i
d

(u, v, l)
, with

kmax∑
l=1

f̂(u, v, l) = 1

This leads to the estimated SM kernel for Model 2 q̂ (2)
i
d

(u, v, l) being described

through model 1 :

q̂
(2)
i
d

(u, v, l) =

(∑kmax
l=1 q̂

(1)
i
d

(u, v, l)
)(∑d

i=0 q̂
(1)
i
d

(u, v, l)
)

∑d
i=0

∑kmax
l=1 q̂

(1)
i
d

(u, v, l)
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Non-parametric Estimation for model 3

Model 3

p̂(u, v) =

∑d
i=0

∑kmax
l=1 q̂

(1)
i
d

(u, v, l)

d+ 1
, with

∑
v∈E

p̂(u, v) = 1

f̂ i
d

(u, v, l) =
q̂

(1)
i
d

(u, v, l)∑kmax
l=1 q̂

(1)
i
d

(u, v, l)
(as in model 1).

This leads to the estimated SM kernel for Model 3 q̂ (3)
i
d

(u, v, l) being described

through model 1 :

q̂
(3)
i
d

(u, v, l) =
q̂

(1)
i
d

(u, v, l)
∑d
i=0

∑kmax
l=1 q̂

(1)
i
d

(u, v, l)

(d+ 1)
∑kmax
l=1 q̂

(1)
i
d

(u, v, l)
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In conclusion :

Model 1

q̂
(1)
t
n

(u, v, l) =

d∑
i=0

Aiq̂
(1)
i
d

(u, v, l)

Model 2

q̂
(2)
t
n

(u, v, l) =

d∑
i=0

Ai(t)


(∑kmax

l=1 q̂
(1)
i
d

(u, v, l)
)(∑d

i=0 q̂
(1)
i
d

(u, v, l)
)

∑d
i=0

∑kmax
l=1 q̂

(1)
i
d

(u, v, l)


Model 3

q̂
(3)
t
n

(u, v, l) =

d∑
i=0

Ai(t)

 q̂ (1)
i
d

(u, v, l)
∑d
i=0

∑kmax
l=1 q̂

(1)
i
d

(u, v, l)

(d+ 1)
∑kmax
l=1 q̂

(1)
i
d

(u, v, l)


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Parametric Estimation
Estimators of parameters for the discrete distribution of sojourn time

We note m̂1 =

kmax∑
x=1

xf̂(x) and m̂2 =

kmax∑
x=1

x2f̂(x)− m̂1
2.

Geometric(p) : f(x) = p(1− p)x−1, x = 1, . . . , kmax. Then p̂ = 1/m̂1.

Poisson(λ) : f(x) = λx−1 exp−λ
(x−1)!

, x = 1, . . . , kmax. Then λ̂ = m̂1.

Negative Binomial (α, p) : f(x) = Γ(x+α−1)
Γ(α)(x−1)!

pα(1− p)x−1,

x = 1, . . . , kmax. Therefore:

p̂ =
m̂1

m̂2
, α̂ = m̂1

p̂

1− p̂ =
m̂1

2

m̂2 − m̂1

Discrete Weibull (q, β) : f(x) = q(x−1)β − qx
β

, x = 1, . . . , kmax.
Therefore:

q̂ = 1− f̂(1), β̂ =

∑kmax
i=2 logi(logq̂(

∑i
j=1 f̂(j))

kmax − 1
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dsmmR - Main Functions

It constitutes of the main functions :

1. fit_dsmm():

Fit a DSMM on a given sequence. Parametric or non-parametric estimation
is possible (Model 1, 2 or 3).

2. parametric_dsmm()& nonparametric_dsmm():

Define a parametric or non-parametric DSMM (Model 1, 2 or 3)

3. simulate.dsmm():

Generate a sequence of states with a maximum number of simulations
equal to n+ 1 (model size).

4. get_kernel():
Compute the DSM kernel q t

n
.
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3 Sojourn Time Distributions (degree 2) : f0, f 1
2
and f1

f0(u, v, l = 1) f 1
2
(u, v, l = 1) f1(u, v, l = 1)

= = = 0 0.2 0.7
0.3 0 0.4
0.2 0.8 0

  0 0.3333333 0.4
0.3 0 0.4
0.2 0.1 0

  0 0.3 0.3
0.3 0 0.5
0.05 0.1 0


f0(u, v, l = 2) f 1

2
(u, v, l = 2) f1(u, v, l = 2)

= = = 0 0.3 0.2
0.2 0 0.5
0.1 0.15 0

  0 0.3333333 0.4
0.4 0 0.2
0.3 0.4 0

  0 0.2 0.6
0.3 0 0.35
0.9 0.2 0


f0(u, v, l = 3) f 1

2
(u, v, l = 3) f1(u, v, l = 3)

= = = 0 0.5 0.1
0.5 0 0.1
0.7 0.05 0

  0 0.3333333 0.2
0.3 0 0.4
0.5 0.5 0

  0 0.5 0.1
0.4 0 0.15
0.05 0.7 0


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3 Transition Matrices (degree 2) : p0, p1
2
and p1 and metric

p0(u, v) p 1
2
(u, v) p1(u, v)

= = = 0 0.1 0.9
0.5 0 0.5
0.3 0.7 0

  0 0.6 0.4
0.7 0 0.3
0.6 0.4 0

  0 0.2 0.8
0.6 0 0.4
0.7 0.3 0



We are going to use the following metric, defining the distance between the
d+ 1 theoretical kernels q(M)

i
d

with the estimated ones q̂ (M)
i
d

, for all 3 models

M = 1, 2, 3 :

d
(
q

(M)
i
d

, q̂
(M)
i
d

)
=
∑
uvl

(
q

(M)
i
d

− q̂ (M)
i
d

)2

,

where u, v ∈ E, l ∈ {1, . . . , kmax}.
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R Package

[8] V. S. Barbu, I. Mavrogiannis 3 and N. Vergne, 2022. dsmmR : a R package for
Estimation and Simulation of Drifting Semi-Markov Models. Available at
https://cran.r-project.org/web/packages/dsmmR/index.html.

3. Thanks to FEDER DATALAB
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Model
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Analysis
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Download

[9] J. Komar, A. Lefebvre, H. Mayeur and N. Vergne, 2021. WebDRIMM : a web interface
for drifting Markov model estimation and reliability. Available at
http://bioinfo.univ-rouen.fr/WebDRIMM/download.php.
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Swimming : learning

30 swimmers, 20 sessions of 250m : arm-leg coordination

11 states : 11 characteristic motor behaviors

Here, coordination 11 has been progressively installed in this swimmer
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Swimming : 3 phenomena of learning

Disappearance (red) of beginner behaviors

Appearance (green) of expert behavior

Motor exploration (blue) : appearance and disappearance of behaviors
(necessity ?)

Perspective : study of these behaviors as a function of learning conditions
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Publication

[10] J. Komar, L. Seifert, N. Vergne and K.M. Newell, 2023. Narrowing the coordination
solution space during motor learning standardizes individual patterns of search strategy
but diversifies learning rates. Scientific Reports, 13. Available at :
https://www.nature.com/articles/s41598-023-29238-z
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Visual Motor skill

The effective coordination of one’s movements, within physically demanding
environments, is a major challenge in several activities such as that of climbing.

It is without a doubt that climbers rely on multiple sources of information to
scan their environment and aid in their actions. These sources of information
encompass visual, auditory, tactile as well as prior experience.

Visual-motor skill is defined as the ability to identify important visual cues in
the environment and coordinate movements to achieve a desired outcome.
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Visual Motor skill

When it comes to the modeling of visual-motor skill data, Drifting Markov
Models (DMMs) could be proved a flexible tool due to their ability to model
sequence heterogeneities as opposed to the “traditional” Markov chains or
hidden Markov models.

Why to assume heterogeneity ?

1. It is usually involved to the evolution of dynamical systems, and ;

2. Interactions may occur between the system and the environment that can
potentially lead to a heterogeneity in the functioning of the system.

In this work, we study climber´s dynamic of learning across several sessions, i.e.,
on a long time scale, through the DMMs mechanism based on a real case study.
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Experimental Data

The experiment was conducted at the University of Rouen Normandy. By
utilizing specialized equipment such as eye-tracking glasses and action cameras,
10∗ climbing Sessions of 11 individuals were recorded. Each session consisted
by several trials, specifically :

- Sessions 1 and 10 : 6 Trials ;

- Sessions 2-9 : 9 Trials.

After a thorough preparation/investigation/cleaning of the raw data, the final
amount of trials remained, from the starting 854, were 729.

∗Please note that due to medical issues, individual No2 was submitted only to 4
Sessions in total.
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Guidelines

1. Climb as fluently as possible, i.e., minimizing pauses and jerky
movements of the body ;

2. Use all the handholds in a specific order from bottom to top ;

3. Use all the handholds/footholds with a single limb contact at a time
(participants were prohibited to use a hold with both hands/feet
simultaneously).
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The Wall
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Video
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Clustering

The first step of the analysis is to determine the state space A, i.e., the clusters
required for applying the DMM procedure. To that end, an unsupervised
clustering technique (k-Means) is applied based on the following variables :

- Gaze Offset (time difference between last gaze visit within the Area of
Interest (AOI = 30cm around the hold) of the previous hold and touching
the next hold) – GO ;

- Time Difference Between Touching Two Holds – TD2H, and ;

- Duration of Last Gaze Visit Within the AOI – DLGV.

After testing several values for k and based on Fisher’s Information (FI, the
higher the better) defined as :

FI =
Inter cluster effect
Intra cluster effect

=
SSB

SSTw
,

the chosen number of clusters is 4, namely a, b, c and d.
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Clustering
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Clustering

Table – Centroid values of each cluster

Cluster GO TD2H DLGV
a (medium effective) −0.047 0.936 2.928
b (less effective) −0.241 2.100 0.960
c (most effective) −0.059 0.798 0.786
d (less effective) −0.002 1.060 6.506

Table – Centroid SDs of each cluster

Cluster GO TD2H DLGV
a 0.231 0.518 0.750
b 0.344 0.751 0.570
c 0.242 0.326 0.419
d 0.239 0.591 1.694
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Drifting Markov Model

Having concluded with the state space A = {a, b, c, d}, we can move onto the
DMM procedure. After several combinations of orders and degrees, we
concluded that the optimal selection (in terms of both complexity and
information gained and AIC) is the DMM of O(1) and D(3) :

Π t
n

(u, v) =

(
−

9

2

t3

n3
− 9

t2

n2
−

11

2

t

n
+ 1

)
Π0 +

(
27

2

t3

n3
−

45

2

t2

n2
+ 9

t

n

)
Π 1

3

+

(
−

27

2
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n3
+ 18
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n2
−
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2

t

n

)
Π 2

3
+

(
9

2

t3

n3
−

9

2

t2

n2
+
t

n

)
Π1.

Through the drimmR package in R, the above DMM was fitted to each of the
11 individuals on the sequence of all of their trials with results as follows.
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Distributions of states
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Distributions of states
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First conclusions of the modeling

In this work our goal was to study climber´s dynamic of learning on a long
time scale through DMMs. To that end, a real case study was conducted at
University of Rouen Normandy concerning 729 trials of 11 individuals. By
applying the k-Means clustering technique for obtaining the state space A =
{a,b,c,d} three effectiveness-related behaviors/patterns were discriminated :

1. Less effective
Clusters “d” (quite long TD2H and longest DLGV) and “b” (most
negative GO and longest TD2H) ;

2. Medium effective
Cluster “a” (quite long TD2H and second longest DLGV) ;

3. Most effective
Cluster “c” (shortest DLGV and shortest TD2H).
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First conclusions of the modeling

Furthermore, by fitting the DMM of order 1-degree 3 on the whole sequence of
trials of each individual, we observed that :

1. All individuals "struggled" at the beginning of learning since they used
(with high probability) the less effective cluster "b".

2. Across the learning process, the behavior of individuals was positively
evolved leading to the adoption (by the majority) of the most effective
cluster "c".

3. There were three individuals that appeared a different behavior at the end
of the process.
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Concluding remarks

Conclusions

drimmR : drifting Markov models, reliability, different types of datas.

smmR : semi-Markov models, reliability, different types of sojourn time,
censoring, non-parametric and parametric.

dsmmR : drifting semi-Markov models, models 1, 2 and 3, non-parametric
and parametric.

Future directions

hsmmR : hidden semi-Markov models, reliability, different types of sojourn
time, censoring, non-parametric and parametric (thanks to ANR
HSMM-INCA).

gdrimmR : generalized drifting Markov models, reliability (thanks to
CNRS for E. Kalligeris contract).

Eye-Tracking : work in collaboration with CETAPS to analyse climbing
data. Clustering of models.
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